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ABSTRACT
This paper presents an overview of recent applications of Eulerian-Lagrangian computa-

tional schemes in simulating transonic flutter instabilities, n this approach, the fluid-structure
system is treated as a single continuum dynamics problem, by switching from an Eulerian to a
Lagrangian formulation at the fluid-structure boundary. This computational approach effec-
tively eliminates the phase integration errors associated with previous methods, where the fluid
and structure are integrated sequentially using different schemes. The formulation is based on
Hamilton's Principle in mixed coordinates, and both finite volume and finite element discreti-
zation schemes are considered. Results from numerical simulations of transonic flutter insta-
bilities are presented for isolated wings, thin panels, and turbomachinery blades. The results
suggest that the method is capable of reproducing the energy exchange between the fluid and
the structure with signilicandy less error than existing methods. Localized flutter modes and
panel flutter modes involving waveling waves can also be simulated effectively with no a priori
knowledge of the type of instability involved.

NOMENCLATURE
a = speedof sound; also location of elastic axis
c = 2b = airfoil chord
e -- internal energy
E = total energy
f = body force
h = bending deflection, positive down
k = ¢abAJ=reduced frequency
Kh = typical section bending stiffness
Ka = typical section torsional stiffness
m = mass per unit span
M =Mach number

p = pressure
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generalized coordinates
position vector
nondimensional radius of gyration about EA
blade spacing along leading edge locus
s sinO
s cosO

= time
-- stress vector

= kinetic energy
= nondimensional CG-EA offset

= velocities in x,y directions
= material velocity vector
= mesh velocity vector
= U,Ibo_a
= swain energy
= free-stream velocity at upstream infinity
= angle of attack; also torsional deflection
= stagger angle; also node rotation
= ml_pb2= mass ratio
: air density
= interblade phase angle
= circular frequency, rad/s
= uncoupled frequency in bending
= uncoupled frequency in torsion

Superscripts and Subscripts
E = elastic
F = fluid
oo = conditions at upstream infinity
e = conditions at exit

INTRODUCTION
The classical analytical methods and computational schemes for solving fluid-structure

interaction problemswere establishedin a differentera, before the dawn of the computer age.
Early developments in the field of unsteadyaerodynamics,especially the exact solution of
Theodorsen [1] for two-dimensional incompressible flow over an airfoil executingsimple har-
monic motion, undoubtedlyinfluencedthe directionof research.Thus, it not surprising that
modal methods in the frequency domain played such a central role in the theoretical treatments
of flutter calculations in the classical and modem texts on aeroelasticity [2-5].

Recent advances in supercomputers and massively parallel machines have had a significant
impact on the feasibility of carrying out nonlinear transonic flutter calculations in the time-
domain. It was pointed out by the author in Ref. 6 that this increased use of computers to simu-
late the behavior of physical systems has focused attention on the need to reexamine the exist-
ing classical approaches to certain problems. The frequency domain is a natural setting for
problems amenable to the Fourier-type solution methods characteristic of classical unsteady
aerodynamics, but not for nonlinear aeroelastic problems where the aerodynamic forces are
computed in the time domain. Although time-domain aeroelastic calculations have by now
become commonplace, the computational approach followed in most of these studies are along
classical lines. That is, the fluid and the structure are modeled separately, and then coupled by

specifying the kinematic boundary conditions at the fluid-structure boundary. The kinetic or
natural boundary conditions are not treated as boundary conditions in the ordinary sense;
instead, they provide forcing terms in the governing equations of motion for the structure.
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This classical approach appears, at first glance, as a natural extension of the analytical
frequency-domain methods into the computational time-domain. But on closer examination, a
most important and fundamental difference emerges. Because the boundary between the fluid
and the slructure is a Lagrangian surface, whose state (displacements and velocity) must be
known in order to impose the kinematic boundary conditions at this surface, the classical time
marching method cannot be carried out without introducing approximations. The reason why
approximations are necessary follows from the observation that in order to determine the exact
state of the boundary at time t, one must first solve the entire system of equations for the struc-
ture. But this cannot be done until the surface pressure is known, which depends on the solu-
tion for the fluid domain, which in turn depends on the (yet unknown) boundary conditions
during the current time step At. Thus, there can never be exact simultaneity between the
unsteady events calculated in the structural an_ fluid domains. Since the fluid and the structure
are in effect integrated sequentially during each time step, often using different numerical
schemes, undesirable phase and integration errors are in_oduced.

There is thus a fundamental difference between aeroelastic simulations, where the sU'ucture
is free to move in accordance with Newton's Laws, and steady or unsteady flow calculations,
where the structure is fixed or forced to move in a kinematically constrained manner. This fact
is seldom mentioned in papers dealing with computational fluid dynamics (CFD), or with the
computational aspects of aeroelasticity. In unsteady flow calculations where the motion of the
airfoil is prescribed, the future state of the fluid-structure boundary is known and numerical
errors (whatever their source) do not affect the future position and motion of the boundary.
Because the motion of the structure is unaffected by conformity or consistency errors arising at
the fluid-slnlcture boundary, such errors tend to "average out" over a cycle of oscillation. This
/s not the case in aeroelastic calculations, however. Not only is the future state of the fluid-
structure boundary unknown, causing the aforementioned difficulty in implementing the boun-
dary conditions, but errors from all sources affect the future position and velocity of the fluid-
structure boundary. The computational model of the aeroelastic system behaves as a feedback
control system, where the state of the structural system is not only affected by the "true" aero-
dynamic forces, but also by fictitious "control forces" arising from the continued feedback of
modeling and numerical errors. Here, errors do not tend to "average out" over a cycle and
remain bounded in the long run, because of the highly nonlinear amplification possible through
this feedback mechanism.

Results from a large number of numerical simulations of Wansonic flutter instabilities indi-
cate that two distinctly different manifestations of these errors can occur:.
1. A long-term cumulative error in the calculated motion of the aeroelastic system, similar to

the temporal nonuniformities or far-field nonuniformities that occur in perturbation prob-
lems that are singular or involve multiple time scales.

2. A significant qualitative and quantitative error in the stability behavior of the system, includ-
ing a large error in the calculated fluuer boundary and possibly also a qualitatively incorrect
assessment of the type of instability behavior (flutter vs. divergence).
It should be clear from these observations that one must distinguish between the inherent

accuracy of the individual CFD and FEM computational schemes used for the fluid and solid
domains, and the accuracy of the overall aeroelastic scheme. It is meaningless to insist on
higher-order CFD/FEM schemes in flutter calculations if the boundary conditions are imple-
mented such that only first-order (or less!) accuracy is obtained in the aeroelastic simulations.
The implications for implicit schemes, where the allowable time step At is set by accuracy
rather than numerical stability considerations, are obvious.

In Ref. 6, we have proposed a new approach to the pcoblem, which has been further
developed and explored in a series of papers [7-11]. By formulating the governing equations
for both the fluid and the structure in integral conservation-law form based on the same mixed
Eulerian-Lagrangian description, the entire fluid-structure system can be ueated as one prob-
lem, while still allowing for different spatial discretization schemes in the two domains, ff so
desired. In this approach, the boundary conditions become transparent to the time-marching
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algorithm, resulting in highly vectorizable codes. The method also provides a systematic and
efficient procedure for coupling finite element sfluctural codes to finite volume or finite ele-
ment fluid codes, allowing the direct use of highly accurate finite element structural models
rather than a truncated set of normal modes.

The objective of the present paper is to present a brief overview of the computational
method, and to illustrate its application in distinctly different areas of classical and computa-
tional aeroclasticity. The transonic flow regime is intentionally emphasized, because of the
challenges it represents both from a computational fluid dynamics standpoint, and also because
of its rich source of nonlinear and surprising aeroelastic phenomena. These cases include
illustrations of aeroelastic instabilities where several degrees of freedom participate to generate

localized response or traveling waves, which are difficult to treat accurately using modal
methods.

VARIATIONAL FORMULATION OF AEROELASTIC CONSERVATION LAWS

Hamilton's Principle
Coupled fluid-structure interaction problems involve, by definition, interactions between two

distinct material domains (fluid and solid). In modeling the structural problem, finite element
methods based on a Lagrangian (material) description are typically used, and Hamilton's Prin-
ciple and variational methods play an important role in formulating the equations of motion.
For the fluid problem, finite difference or finite volume methods based on an Eulerian (spatial)
description are more popular, and variational methods are conspicuous in their absence.

If Eulerian coordinates are used in connection with the classical Lagrangian density,

Hamilton's Principle gives trivial results. Various attempts have been made to augment the
Lagrangian by adding terms that, when substituted into Hamilton's Principle will yield the
sought field equations; see, for example, the discussion in Ref. 12. Although many of these
investigations take Hamilton's Principle as a starting point, they usually have little if anything

to do with the physical contents of the principle.
Hamilton's Principle represents an alternate formulation of Newtonian mechanics, and is

therefore capable of producing the correct equations of motion in an arbitrary coordinate sys-
tem. There is no need to introduce ad hoc terms in the Lagrangian, a procedure that this author

considers in violation of the spirit of Hamilton's Principle. One must recognize, however, that
Hamilton's Principle is based on material particles and variations of the Newtonian paths of
such particles, and that the mass of a particle is not to be varied in the process of varying the

path.
To this end, we introduced in Ref. 7 the concept of a "material variation", constructed such

that the variational operator 5 in Hamilton's Principle remains a Newtonian path variation
under coordinate transformations. Consider a finite region of a continuum, represented by a
material cell of volume f_, as illustrated in Fig. 1. Hamilton's Principle in its extended form,

t2

[ST-SU +SWE]dt =0
tl

O)

is applicable without additional assumptions regarding the nature of the forces present. Here,
8We is the virtual work of all forces acting on the material particles in the volume, and may
include forces for which no scalar potential can be found such that 8WE = --5V. In this very

general form, the principle is an integral statement of D'Alembert's Principle rather than a
"flue" variational principle.

If all forces are derivable from scalar potentials, Eq. (1) becomes a variational principle:
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This form is well-established for conservative dynamical systems, however, it is also valid for
nonconservative systems where the Lagrangian is time-dependent, as long as the previous
assumptions hold.

The Lagrangian density Lo is defined as

where

Lo = To - Uo - Vo_ = To - Vo (3)

. °

To = -_ prlirh + T_(rh,_h) + T_o(rh) (4a)

U° = f Oil dEij (4b)
0

Here, T Oand U0 are the kinetic and internal energy densities, respectively. The terms T_oand
T_ are only present in noninertial reference frames and give rise to centripetal and Coriolis
forces. The coordinates 11/ are arbitrary generalized displacement coordinates, in the distri-
buted sense. Finally, V0e is the density associated with the potential of the external forces,

VVE = j"VVoEdi'l (Sa)
£I

p/= - VVo_ (5b)

Fora solid element, Uo is the familiar strain energy density. For a fluid element, Uo is equal to
the (intrinsic) internal energy per unit volume, which for a perfect gas reduces to

1
Uo= p (6a)

pe = Uo + To (6b)

where e is the total energy per unit mass. In either case, U0 represents the internal potential
energy, and Eq. (6a) is obtained from F_.,q.(4b) by assuming inviscid flow, oij = -PSo, and
integrating along a reversible path, using the perfect gas law.

Euler-l.agmnge Equations of Motion
For inviscid flows, it suffices to consider variations of "action" integrals of the form

12

J JLo(x,.,.n,,n,.A,)ana, (9)

where the _i's represent arbitrary generalized displacement coordinates in the distributed
sense. In Lagrangian coordinates, applying Hamilton's Principle by setting _/= 0 ( fl fixed)
leads to the classical Euler-Lagrange equations of the calculus of variations:
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aLo a aLo a aLo

_, -at_ a_j(_ )=° (lO)

In a mixed Eulerian-Lagrangian description, the domain f_(t) constitutes an intermediate refer-
ence frame, moving with an arbitrary but kinematically specified velocity U. Consider the
material integral

¢_= I O(xi,t,rh,'qij,_i)df_ (11)

The time rote of change of d) in the xi reference frame is

-_-= _ at
(12)

and may be considereda totalorconvectiverate.Itisthenstraight-forwardtoshow that,in
ordertopreservethematerialnatureofthevariationaloperator"8"inHamilton'sPrinciple,the
timederivativeintheclassicalEuler-Lagrangeequationsmustbechangedasfollows:

.)_ _(.)+v.[(u-r./)(.)] (13)

The corresponding(modified)Euler-Lagrangeequations,validinarbitrarymixed cartesian
coordinates, become

aLo a aLo a [(uj_Uj)OLo aLo (14)

In an inertial coordinate system xi in the absence of body forces, aLolbrh = 0 (translational
invariance). The following conservation-law form of F-Xl.(14) is then obtained:

a aLo _[ aLo OLo
+ (u_-vj)-_--_-+ }=oa, _, axj

Recognizing that the velocity field is given by ui = 13,.,

aLo aLo

_----_= pA ; "--:-=pul

and because of the symmetry of the strain tensor e0, it follows that

aLo aUo aUo

=- =- =-

(15)

(16)

(17)

The governing equations (14) can thus be written as
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_ (pu_) + [ (uj - Uj)pu, - o,j ) ] = PA
(18)

valid in an inertial cartesian coordinate system xl. For an inviscid fluid, the stress tensor is

diagonal

o 0 = -p 8_j (19)

and we obtain the Euler equations of fluid mechanics by setting Uj = 0. If one sets uj = Uj, the

Lagrangian form of the equations of motion are obtained (the divergence is readily expressed
in terms of Lagranglan coordinates; see, for example, Lamb [13].)

We note in passing that the corresponding Navier-Stokes equations can be obtained by sub-

stituting into Eq. (18) the constitutive law

1
o o = -p8 o + 21a(e_j - -_A8 o)

(20)

where p here is the viscosity and

1
eo=.-:-(uij+uj, i) ; A=e_ (21)

2--

are the strain rates and the volumetric expansion rate, respectively.
The conservation of mass equation is a kinematic constraint, and is readily incorporated into

the variational formalism using a Lagrange multiplier. In the present paper, the integral form

is used in the actual discretization procedure,

pdn+ p(u,- v,)., dS--0 (22)

In most cases in aeroelasticity, the energy equation can be handled in a similar manner, since

in cases where only mechanical energies are involved, it is simply a first integral of the equa-
tions of motion. In integral form, it reads

_ped_+_pe(ui-Ui)nidS=_pufd_+_ui_dS
(23)

where _ and _ are the cartesian components of the body forces and surface tractions, respec-
tively. The components _ are related to the stress tensor through the relation

T_i = °O nj (24)

It is convenient and useful to integrate the energy equation and use the relation

p = (y- 1)[ pe - To ] (25)

to eliminate the pressure p. Fo_ a solid cell, such an elimination is not generally possible,
because the internal energy depends on all six components of the stress tensor.
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Boundary Conditions
In the classicalmethod of numericallysolvingfluid-stnzctureinteraction problems,only the

kinematic boundary condition of tangent flow is imposed:

_B
+ u-VB = 0 (26)

_t

where B(x,y,z,t)= 0 defines the instantaneous locus of the fluid-structure boundary. The
kinematic boundary conditions are not enforced explicitly; that is, one does not enforce local
force equilibrium between a fluid and a solid element at the boundary B, nor does one equate
the energy flow or power at the common boundary.

In the present study, both kinematic and kinetic boundary conditions are satisfied locally at
the fluid-structure boundary. By switching from an Eulerian to a Lagrangian formulation at
the boundary, the boundary conditions become transparent and they can be satisfied automati-
cally as the equations of motion are integrated. The kinematic boundary condition can be
imposed by zeroing out the convective fluxes a! the fluid.structure boundary, leaving only the
pressure terms in the boundary integrals. These pressure terms contribute to the kinetic boun-
dary conditions, but need not be considered explicitly because the kinetic boundary conditions
between cells are taken care of by the conservation laws being integrated.

At the upstream and downstream far-field boundaries we use nonreflecting boundary condi-
tions of the type formulated by Hedstrom [14] and generalized to two space dimensions in Ref.
15. In the cascade calculations, phase-lagged periodic boundary conditions are applied at the
boundaries of the reference channel. Thus, if _ denotes the spatial coordinate along the
periodic (upper and lower) boundaries of the reference channel, we enforce

w_(_,t)= w,,(_,t-o/o)

wu(_,t)= wj(_,t-(21t-o')/to)

(27a)

(27b)

where o and to are the interblade phase angle and the circular frequency, and the subscripts u
and i indicate upper and lower boundaries, respectively. In order to prevent numerical instabil-
ities, it is necessary to limit the magnitude of the change in the periodic boundary conditions
during each time step.

SPATIAL DISCRETIZATION SCHEMES

Finite Volume Method
In the two-dimensional cases considered in this paper, we take the unknowns as

Lp=J

(28)

Applying the divergence theorem to the Euler-Lagrange equations, with the mass and energy
equations appended, the system is transformed into the following set of integral conservation
laws:
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(29)

where_ isanelementareawith(moving)boundaries_ and

p(u-U) 1
pu(u-U)- o..
or(u-U)-o,_ |

pe(u-U)- o.u - o.,vj

I p(v-V) I
_ I pu(v-v)+a= |

", =] pv(,-v)-a.
Lpe(v-V)+ o.,u- o,.,vj

(30)

Here,u,vand U,V arethecar_iancomponentsofu andU, respectively,and o. and o.,are
thenormalandshearstressesatthesurfacea_. Foracelloccupiedbyan inviscidfluid,we set

a,m= -p, a,u= 0 anduseEq.(25)toeliminatethepressure.
By applyingtheintegralformoftheconservationlawstoeachfluidceil,we obtainasystem

ofcoupledordinarydifferentialequationsoftheform

f_jw_j)+ Qij- Do = 0 (31)

where f_ij is the cell area, Wij is the vector of unknowns for cell (i,j), and Qij is the net flux
out of the cell (i,j), contributed by the integral over af_ in Eq. (29). The flow variables are
assumed constant over each cell and are averaged at cell edges, resulting in second-order accu-

racy on a smooth mesh. D_j is a dissipative operator added to damp out numerical oscillations
and to prevent decoupling of even and odd cells. The dissipative fluxes are constructed accord-
ing to the idea of "adaptive dissipation" developed by Jameson and Baker [16], using a blend
of second and fourth differences in the flow variables.

Galerkin Finite Element Method
Two different finite elementschemesare considered in thispaper.The firstscheme is closest

to the finite volume procedure discussed in the previous section, wherein the divergence
theorem is used (in reverse) to obtain the integral conservation-law form of the equations. The
Galerkin finite dement procedure is then applied to obtain space-discretized equations in the
usual manner, by approximating the vector W of unknowns as

W (x,y,t) = _, Wj(t)Oj(x,y) (32)
J

where Wj are nodal values of W and 0_/are shape (interpolation) functions. In the present
paper, linear interpolation functions are used and the solution is implemented using triangular
elements.

The solution is obtained by discretizing the weak form of the equations,

where

a _Wt_d_+_t_V'Fd[_=O¥ (33)

(34)
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and F_ and F_ are given by Eq. (30). Substituting Eq. (32) into the first term in Eq. (33) and
interchanging the order of summation and integration, one obtains

where

(E d Wj) (35)

m_ =/_ _i_bjd_ (36)

are the elements of the consistent mass marx, for element _. In the unsteady (deforming
mesh) case, the mass matrix is time-varying and depends on the local Jacobian determinant.
However, if linear shape functions are used, the generalized mass elements can be evaluated
exactly.

Using the divergence theorem, the second term in Eq. (33) can be written as

I OiV" F df_ = Ja*i F'n dS - _ F" V¢#idt_ (37)
cl

where n is the unit outward normal to the boundary _ of _. Because F is a nonfinear func-
tion of the flow variables, the integrals in Eq. (37) must be evaluated numerically. Denoting
the contribution by the flux integrals, Eq. (37), associated with node i of element f_ by Q_, the
space-discretized FE equations of motion for a single element become

d t_,maWj)+Qia=O (38),j
/

where the range of the i and j indices are the nodes for element t_.
Equations (38) are formally identical to the corresponding FE equations for a structural ele-

ment, if the W_'s and the Q_'s are interpreted as the element generalized coordinates and the
corresponding (nodal) generalized forces, respectively. But in the present formulation, we do
not assemble the element matrices into global system matrices, as is customary in structural
dynamics. Instead, we perform a local assembly only, by algebraically summing the contribu-
tions from all elements t2_ that meet at node i. The union of these elements forms a control
volume V_ surrounding node i; hence this local assembly can also be performed by applying
the above finite element discretization equations directly to the "superelements"

lvl
Vi= _t2_ ; i=l,2, "" ,N 09)

k=l

where N_ is the number of elements meeting at node i and N is the total number of nodes.
Adding dissipative terms, the space-discretized Galerkin FE equations can be written as

d
d'-7 m° ) + Q, - Oi = o (40)

1

where i = 1, 2, ... N (all nodes), and the summation on j extends over the nodes in the
superelement Vi associated with node i. The dissipative fluxes Di are of the Jameson type, and
are slight modifications of the terms used by Mavriplis [17] in his nodal finite volume code. In
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the FE calculations presented in this paper, tmstrucmres triangular grids of the type illustrated
in Fig. 2 were used. Sfightly different implementations were used in the external (panel) and
the internal (cascade) calculations; see Refs. 18-19 for furtherdetails.

kagranglan Finite Element Method
The secondscheme proceedsdirecOy from the variational principle (Hamilton's) to the

discretized Lagrange equations in a suitable setof ge.netalized coordi.'nat_es,{.q}q.. This is the
procedure used to obtain the space-discretizod equauons for the solid domain (wing, maaes,
panel). At the fluid-structme boundary, we switch from a mixed method to a Lagrangian
method by setting Ui = ui.

Modified Typical Section. A typical section isolated wing model has been implemented as
illustrated in Fig. 3. A section of unit width in the spanwise direction is considered, in the
spirit of the original ideas of Theodorsen and Garrick, but with two important differences.
First, the section is allowed to have camber bending,and this"chordwise"flexibility is
modeled using plate-type elements of unit width; see Fig. 3b. Each element is allowed a hol-
low core, by specifying the effective structural skin thickness t, for each element. Second,
since the method of calculation is at the element level, an attempt is made to model the distri-
buted restraining stiffness from the remainder of the wing on each element, by inu'oducing
bending and torsion springs at the element nodes. By careful tailoring of the parameters as dis-
cussed in Ref. 6, the strip model can be matched to any regular typical section model in the
limit as the chordwise stiffness approaches infinity.

On a C-mesh of quadrilateral elements, one obtains a set of discretized equations very simi-
lar to Eqs. (31):

d °

-_([m ]ij{q }i)) + {QE }ij - {QF }ij = 0 (41)

Here, the i,j subscripts refer to the (i,j) node, whereaselementsare labeledwith superscripts;
i.e., [m]O is the element mass mauix. For the blade structure in Fig. 3, the structuralelements
are at j=l, and we can drop the j-subscript and write

{q }T = { wi Oi } (42)

where wi and Oi are the wansverse and rotational displacements at node (i, 1), Fig. 3b. Plate
element of unit width are used, with the wansverse displacement w(_,t) inside a typical ele-

ment approximated in terms of the nodal coordinates q_ as follows:

4

w(_,t)= Y'_N,(_)qt(t) (43)
k=l

where the Nk's are the standard cubic shape functions.
The 2x2 "nodal" mass matrix in Eq. (41) is written in terms of the lumped element mass

malrices for elements i and i+1 as

[mli = [m]h Jl" rtmJll'i+l (44)

where the element matrices have been partitioned into 2x2 submatrices in the usual way.
Similarly, the nodal elastic forces {Qe}ij, and the generalized nodal fluid pressure forces
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|QP )_/can be expressed in terms of the corresponding element forces, as follows:

where

{QE},=([_]i2 + [t]_T'){q}i+ [tfi, {qh-1 + [k]_ 1{q}_+_

Qp _,,pc;+,) Q_ili --Idl +

Qr _p(i+l) Q_;2/=ld2 +

(45)

(46a)

(_b)

(47)

and p_ and p_ are the fluid pressures on the lower and upper surfaces of the ith element, respec-
tively. It is important to note that we do not need to assemble the structure and form global
stiffness (or mass) matrices; only local assembly at the element (node) level is required, pre-
cisely as in the fluid domain. Although we have assumed a linearly elastic structure in Eq.
(45), nonlinear material behavior, both elastic and inelastic, are relatively easy to incorporate
at the local element level.

To complete the solution procedure, we need to perform another integration to get from {_ }

to {q }. This is necessary since we need to know the actual nodal displacement vectors in order

to move the mesh coordiuates x0,y 0 in a Lagrangian fashion. It is done simultaneously in the
multi-stage Runge-Kutta scheme, by writing the equations in state-variable form by appending
at each node the matrix identity

_ {qli_= {0}o (48)

The energy equation for the slructure is discretized and integrated as follows

where

d
_-(E,o,) =/_,o, = Y',{(_}[{Q_ h (49)

i

E.,= _E(r, + u_) (50)
i

For a linearly elastic structure, the kinetic and strain energies can be expressed in terms of the
present (local) element mass and stiffness matrices as

1 . 1
Ti + Ui = w{q}[[m ]itq}i + w{q}r[k li{q}i

1. z
(51)

From a computational standpoint, it is both natural and advantageous to use finite elements
throughout both the structural and the fluid domains. By imposing "conformity" or "compati-
bility" conditions on the shape functions, we guarantee that the basic conservation laws for
mass, momentum, and energy are satisfied at the fluid-structure boundary, to within the discret-
ization error of the scheme. For maximum modeling flexibility and computational efficiency,
both the fluid and the solid element should be allowed interior nodes with respect to the other.
In modeling thin compressor blades with plate elements, as in the present scheme, we use a
much coarser mesh for the structure, especially in the leading and wailing edge regions where
flow gradients are high. By matching the mesh densities appropriately, a simultaneous optimi-
ration of the computational efficiency and the discretization/modeling errors can be achieved.
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Rotatlng Turbomachlnery Blade. The bladeis modeled as a thin plate with varying thick-
ness, using the yon Karman theory to incorporate the effect of the in-plane centrifugal forces.
The kinetic energy of the rotating blade, Fig, 4, can be expressed in the form

1
T = -21 oh {_2 + L__2[(ro+y)2+ (wCOSO+ xsinO)2] }dxdy (52)

where term associated with Coriolis forces have been neglected. The total slaain energy can be
expressed as

U = f Uodzdydz= Ub + U. (53)

L y2j ax'
r 21+ 2(1 -v) dxdy
L YJ J

(54a)

] tN.C.o+N, o + (54b)

where D = Eh3/12(1 -v 2) is the flexural rigidity of the plate, Ub is the bending strain energy,
and U, is the strain energy due to the in-plane centrifugal forces.

The stress resultants N_, Ny, and N_, which arise from cenlrifugal forces and give rise to the
strains e_o, _o and Y_o in the middle surface of the plate, are approximated as follows:

b

N_ = _ phf22_ sin20d_ (55a)
X

L

Ny = _ phn2(r0 + _)dr I (55b)
Y

N,v = 0 (55c)

The virtual work done by the aerodynamic forces on the rotating blade is given by

8We = _(Pt - p,)Swdxdy = 5'. Qf Sq, (56)
i

where Pt and p_ are the fluid pressures on the lower surface and the upper surface of the blade,
respectively, and Q/P are the generalized fluid forces.

In the present study, the blade is discretized into n×m reel,angular plate elements. For each
dement, a bi-cubic polynomial is used to describe the deflection field. The transverse dis-
placement inside element ij can be expressed in local element coordinates (_J1) as:

16

wij(_JI,t) = _ Nk(_,_)q,(t) (57)
k=l
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whereq:"q4,qs-qs,qg-ql2and qt3-q16arcthenodalvalueofw, Bw/Bx,Bw/By,B2wlBxBy
associatedwithnodesI,2,3and4. The shapefunctionsNt(_Jl)arcproductsofthefirst-order

one-dimensionalHermit/aninterpolationfunctions.
The spacc-discrctizodequationsofmotionfora givenelementortheentirebladecan be

obtainedusingLagrange'sequations,aftersubstitutingF-Xl.(57)intotheappropriateexpres-
sionsforTand U:

d([M2]{c)})+([K]- [M0]){q}- {QC}_ {QF} =0 (58)

where {q} is the generalized coordinate vector of the discretized system, [M2] is the mass
matrix associated with the part of the kinetic energy involving the quadratic terms of general-
ized speeds, while [Me] and {QC} are related to tim kinetic energy due to the centrifugal
force. [K ] is the stiffness matrix including both the linear stiffness and nonlinear stiffness due
to the in.plane stretching. For further details, see ReL 20.

The complete aexoelastic model is shown schematically in Fig. 4b. The cantilever blade ties
in x-y pia_, wherex indicates the chordwisedirection and y indicates the simnwisedirection;
seealso Fig. 4a. The shadedstripsare the controlchannels,wherewe assumethat the motion
of the fluid is governed by the two-dimensionalEuler equations in the x-z plane. The aero-
dynamic loads are computedinside each channeland interpolated linearly between adjacent
channels. This channeltheory can be interpreted asan extented (numerical) version of classi-
cal strip theory.

Nonlinear Panel. The smlcturalmodel used in the two-dimensional panel flutter simulations
is based on the nonlinear von Karman plate equations, which can be written as

D _)4w -(Nz+ " "_2w " _2w
_x4 r¢.07_--_- + pn-l_'t2 =p. -p (59)

Here, N,0 is the initial in-plane loading due to external forces, and N_ is the additional in-plane
force induced by the transverse deflections w:

Eh * 3w 2

N.= -_-[(-_--x)_ dx (6o)

where c is the plate chord length.
These equations can be discretized using standard finite element techniques, resulting in a

set of governing equations of the same basic form as F-xl.(41). In the present ease, the elastic
forces in the ith element can be expressed as a sum of two terms

{QE }i=([k]i+ [k,]i)lq}i (61)

where [k] is the linear part of the stiffness matrix and [kg] is the so-called geometric stiffness
matrix arising from the nonlinear stiffness caused by the in-plane stretching due to transverse
deflections of the plate. It should be noted that, because of the fact that the geometric stiffness
matrix is proportional to (N,0 + N_), this matrix depends on the deformations of all elements in
the panel, as isobvious from Eq. (60). Expressions for these matrices can be found in Ref. 21.

O. Bendiksen 14



NUMERICAL EXAMPLES
Sub-u'ansonicflows (M_ < M. < 1)are characterizedby local regionsof embeddedsuper-

sonic flow on the upper and/or lower surfaces of the airfoil. At the aft end of these regions, the
flow is decelerated to subsonic speaxls through nearly normal shock waves. During vibration
and flutter, the shocks move along the airfoil surfaces, changing in strength and possibly van-
ishing over part of the cycle.

Because of the important role that shock motion plays in the flutter problem, a realistic
simulation of Wansonic flutter instabilities cannot be achieved unless the moving shocks are

correctly and in a time-accurate manner. Furthermore, in order to model a mixed
subsonic-supersonic flow-field with finite-amplitude shock motion, nonlinear field equations
are required. If the flow is not of the mixed type, i.e., is either entirely subsonic or entirely
supersonic, the equations can usually be linearized for sufficiently small amplitudes of motion,
or for sufficiently high reduced frequencies. In the mixed subsonic-supersonic (transonic)
case, however, the linearizafion is subject to severe restrictions on blade amplitudes and may
in some cases break down.

Transonic Flutter of Airfoils
Except as noted, we have used5 finite elementsin the chordwisedirection; 3 elastic ele-

ments and two small rigid-body elements at the leading and trailing edges. An all aluminum
structure was assumed, with t,/t varied as noted on the figures.

Figure 5 compares the calculated bifurcation diagrams for the NACA 64A006 wing model
= 10), as calculated using the present method and compared with results taken from Fig. 3

of Ref. 22, which were calculated using the classical approach, as implemented in Refs. 22-23.
This model has also been studied extensively by Ashley [24]. In the notation used here, it has
the following nondimensional parameters:

a- -0.2

x, = 0.2 (X_= 0)

r2 = 0.29 (p_ = 0.25)

t0h/% = 0.3434 (to_/0_ = Oq_A)

The corresponding equivalent parameter values in Ashley's notation have been indicated in
parenthesis.

To provide meaningful comparisons, the fluid domain was modeled and solved in exactly
the same manner as in Refs. 22-23, using the same mesh and the the same five-stage Runge-
Kutta integration scheme. However, in the earlier method the structural equations were
integrated separately, after the fluid equations had been advanced to the next stage within the
multistage scheme. This necessitated an approximation for the lift and moment for the next
time step, and a linear extrapolation was used in Refs. 22-23. In the present approach, no such
approximation is necessary, since the entire doraain of the continuum and all its cells are
advanced simultaneously in time. That is, no distinction is made between solid and fluid cells
during the actual time integration process.

From Fig. 5 it is evident that the linear flutter boundary, represented by the bifurcation
points on the U axis, are in reasonable agreement. However, for this example at least, the clas-
sical method underpredicts the limit cycle amplitudes for reduced velocities significantly
beyond the linear flutter boundary. The reason for this is that the method underpredicts the net
energy flux from the fluid to the structure. Close to the linear flutter points, the results are less
definite and show a greater sensitivity to the computational mesh. At a Math number of .87,
decreasing the chordwise softness of the model by decreasing the structural thickness ratio t,/t
has the effect of increasing the energy flow to the structure, resulting in an increase in the
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flutterfimit cycle amplitude. A comparison of the long-time limit cycle amplitudes is shown in
Fig. 6. This camber bending effect appears negligible for ratios of 0.25 and higher, but
become significantfort,/tlessthan0.I.Thisisincontrastto the same wing atM = 0.92,
where chordwise flexib_ty initially (close m the flutter boundary) is stabilizing, then becoming
mildly destabilizing as U is increased beyond 2.3.

For Mach numbers in the upper transonic range (0.9-1.0), the shocks are typically found to
be confined to the trailing edge region of the airfoil. During flutter, the shocks do not move but
change in strength, imposing a significant localized loading on the trailing edge. If the trailing
edge is sufficiently flexible, the present model predicts that a local _uailing-edge buzz" mode
can get excited, as illustrated in Fig. 7, where the trai_fing-edgeregion oscillates somewhat like
a trailing-edge flap. Here, the Mach number is 0.92, U = 3.0, and t,/t = 0.10.

The term "buzz" is used here to suggest a high-frequency modulation of the flutter mode,
and not necessarily to suggest any connection to the well-known phenomenon of "aileron
buzz", where the viscosity is generally believed to play an important role, through a shock-
induced separation of the boundary layer. However, it seems also plausible that the same
shock-dominated mechanism, albeit inviscid, that here is observed to cause trailing-edge buzz,
could also produce an aileron buzz phenomenon. This question was addressed in Ref. 11,
where it was found that such nonclassical (inviscid) buzz phenomena are indeed predicted by
the present Euler-based calculations, at Mach numbers very close to those where buzz has
been observed in wind tunnel and flight tests. Figure 8 illustrates such a nonclassical aileron
buzz instability, as simulated by the present code.

Figure 9 shows the results of flutter simulations for an NACA 0012 model, with typical sec-
tion parameters similar to those of the NACA 0012 Benchmark Model tested at NASA Lang-
ley [25]:

a--O.O

xa = 0.0

r2= 0.25

¢oh/coa= 0.6564

Limit cycle flutter is predicted, in a predominantly bending mode, which is in good agreement
with the observed flutter at this flutter point. Note the very high mass ratio (4284).

At more realistic mass ratios, our simulations predict a nonlinear interaction between flutter
and a weak divergence instability at this same Mach number (0.80), as discussed in Ref. 26.
The basic mechanism behind the emergence of this weak divergence, which is quenched by
the flutter instability (see Fig. 4 of Ref. 26), is the strong sensitivity of the shocks and the
supersonic pockets to relatively small airfoil displacements, as illustrated in Fig. 10. This leads
to a symmetry-breaking bifurcation, where the a----0equilibrium position becomes unstable and
bifurcates into two stable nonzero (but small a) equilibrium points.

An example of the Type 2 error discussed in the Introduction is presented in Figs. 11 and 12.
At lower transonic Math numbers, reasonable agreement is observed between the calculated
flutter behavior of the NACA 0012 model, using the classical vs. the present calculation
approach. In the upper transonic range ( M > 0.9), however, significant discrepancies were
observed. At Mach 0.9_4,for example, the present simulations indicate that the linear flutter
boundary is at around U = 6.1, with strong flutter already evident at U = 6.5, as shown in Fig.
11. The classical calculation method predicts no flutter whatsoever, for all reduced velocities
up through 8.0 (see Fig. 12), and predicts divergence around U = 8.2-8.5. A doubling of the
mesh density and a reduction in the time step used had essentially no effect on the predicted
behaviors. The precise reason for this significant difference in predicted aeroelastic behaviors
is presently unknown
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Transonic Flutter in Cascaclos and Rotors

Fan and compressor blades are thin, flexible structures, usually of solid titanium or steel,
where camber bending is of considerable importance because of the presence of plate-type
modes. In addition to being susceptible to a number of different flutter instabilities, all tur-
bomachinery blades are subject to fatigue. It is therefore highly desirable to have flutter and
aeroelastic response computational methods based on realistic finite element models f¢_ the
blades, so that dynamic stresses can be calculated.

In the present fluuer simulations, two different structural models are _ In the 2D cas-
cade calculations, we make use of the modified typical section model discussed previously. In
this model, the blades are treated as thin isotropic plates of unit width in the spanwise direc-
tion, with the typical section stiffness represented by attaching blade bending and torsion
springs Ks and Ka at the elastic axis of the blade. The chofdwise flexibility (camber bending)
of the blade is modeled using several plate dements in the chordwise direction, and the fluid
domain is discrefized using the finite volume procedure. In the quasi-3D calculations, we
make use of the rotating blade model discussed above, and the fluid domain is also solved
using finite element discretizations.

Because the blade sections are flexible, the typical section stiffness parameters have been
nondimensionalized as folIows:

12c3Kh 12cKa

Kh = Et3 ' we = Et3 (62)

where t is the maximum thickness of the blade section. Standard sea level values for the inlet

static pressure and density are used, and the blade material is titanium. Using Eq. (62), the
bending-torsion frequency ratio can be expressed as

¢0--:= 2 _ za (63)

where ra is the radius of gyration of the blade section about the elastic axis, nondimensional-
ized by the semichord b. Furthermore,

a.. _ I EKh .t.3

H

where a. isthe fie,c-streamspeed of sound,y isthe ratioof specificheats,E isYoung's
modulus,and p = m/(npb 2)isthemass ratiooftheblade.

Unstaggeredcascadesrepresentperhapsthebesttestcasesforcode checkoutand validation

purposes,becauseof theirsimplegcomc_y and boundary conditions.Lineartheorypredicts

thatthe criticalintcrphaseangleforflutterof an unstaggeredcascadeiso= 180 dcg; thatis,
adjacentbladesare inanti-phasemotion withrespecttoeach other.The boundary conditions

atthe channelsideboundariesthusbecome simplythe conditionfortangentflow,i.e.,v = 0.
This boundary conditionremains exactinthe nonlinearcase,under the assumption thatthe

180-degmode isrealizableand correspondstotheleaststableinterbladephase angle.

An illustrationof limitcycle flutterin cascades ispresentedin Fig. 13. After a slight

overshoot,thebladesettlesintoa stablelimitcycle.Parta)ofthisfigureshows theum_sversc

bending displacementw=-h/c (nondimensionalizedby thechord c=2b)at theelasticaxis,

and thelocalrotationaldisplacement0 aboutthisaxis.Note that0 = _ ifcamber bending is

neglected.Partb) shows thecorrespondingnondimensionaltotalenergy,E_or= U + T,of the

bladesectionvs.time,and thework W A done by thefluidpressureon allthe finiteelements

making up the blade section.Also plottedisthe differenceELo_-W_, which inthe present

undamped model should equal to a constant, i.e., the initial energy of the blade. By integrating
the energy equation, we obtain an independent check on the accuracy of our method and the

O. Bendiksen 17



Runge-Kuua integration scheme. Note the excellent agreement between the initial energy and
the difference Eaot- WA, over more than 20 flutter cycles of oscillation, representing roughly
50,000 time steps. This attests to one of the important advantages of the present method in
aeroelasfic calculations; namely, the fidelity by which the transfer of energy (and therefore also
momentum) between the fluid and the structure is reproduced, The Cp behavior during flutter
is shown in Fig. 14, which reveals a significant shock motion, of the order of the blade chord.

Figure 15 illusuates the emergence of a "nonclassical" flutter mode in a staggered cascade
of NACA 0006 blades, operating at an angle of attack of 3 degrees and at a Math number of
0.85. The interblade phase angle is zero. In this example, the bending and torsion modes
interact nonlinearly to yield a flutter mode that is not a simple, exponentially growing sinusoid.
Instead, the flutter time history reveals a regular pattern that repeats (with increasing ampli-
tudes) every 3 cycles. Within the 3-cycle pattent, the bending-torsion amplitude ratio changes
over a significant range, h/ba= 0.2-0.7. This suggests a nonlinear interaction between the
bending and torsion modes, wherein energy is contimmlly exchanged between the two modes.
Although the flutter mode is not a "classical" flutter mode, it is nevertheless a clearly defined
coherent aeroelastic mode. The blades undergo significant camber bending during flutter.

For the staggered NACA 0006 cascade considered in Fig. 15, an increase in the Mach
number from 0.85 to 0.90 turned out to be stabilizing, leaving the blade essentially on the
flutter boundary, as illustrated in Fig. 16. Again, a highly nonlinear flutter mode emerges.

Finally, an unstaggered cascade of rotating low-aspect-ratio NACA 0003 blades is shown in
Fig. 17. Such blade sections may be considered representative of the aft stages of compressor
rotors, or of the thin tip region of advanced fan blades, outboard of the shrouds. Figures 17a)
and 17b) show the aeroelastic response in bending and torsion, respectively. Here, the angle of
twist of the blade is defined as

0_ = (Wr_- w_)/c (65)

and is equivalent to the conventional torsion theory definition when the blade is chordwise
rigid. Both figures reveal an increase of the amplitude of motion vs. time, i.e., flutter, and a
coherent aeroelastic mode emerges as the blade becomes unstable. The energy plot is illus-
Wated in Fig 17c) and shows that a large amount of energy is extracted by the blade from the
fluid, indicating explosive flutter.

Transonic Panel Flutter
Nonlinear panel flutter in the supersonic range has been studied by a number of researchers,

using a variety of unsteady aerodynamic theories (for an excellent review of the subject, see
Dowell [27]). It is well-known that linear aerodynamic theories give reasonable agreement
with experiments for Mach numbers above about 1.3-1.4, but give _ agreement in the wan-
sonic range, 1 < M < 1.3.

One obvious reason for this discrepancy could be that nonlinear aerodynamic effects are
important and need be included. Recent simulations using the present computational model
[10] suggest that the nonlinear aerodynamic characteristics of transonic flows, including mov-
ing shocks and embedded subsonic regions, may also give rise to a change in the flutter mode
from a standing to a traveling wave. It was noted by Dowell [27] that in the low supersonic
(Wansonic) region, the flutter mode predicted by linearized aerodynamic theories is essentially
a single-degree-of-freedom mode. However, the present nonlinear calculations using Euler-
based aerodynamics predict traveling wave flutter modes in the wansonic Mach number range.

Figures 18 and 19 show the panel deflections at 1/4-chord, midchord, and 3/4-chord during
limit cycle flutter of a typical panel at Mach numbers of 1.0 and 1.2, respectively. The motion
of the panel at Math 1 is especially irregular (but periodic) and shows significant phase differ-
ences between the deflections of the panel at different chord locations, indicating the presence
of a traveling wave (in the generalized sense used by DoweU). The direction of propagation of
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thewaveis in thedirectionofflow,in agreement with experimental observations. A snapshot
of the panel deflection and the associated Mach number disuibutiou, Fig. 20, clearly shows the
presence of a strong shock on the panel.

When the Mach number was increased to 1.2, the strong shocks disappeared and the limit
cycle flutter became more "regular",Fig. 19. However, the presence of higher harmonics in the
flutter response is still evident, as is the temporal phase shifts between the various points along
the plate chord. Figure 21 presents a series of snapshot plots of the panel deflection during one
period of limit cycle oscillation. It is interesting to note that the "instantaneous mode shape"
continuously evolves during each cycle of oscillation, in a nonharmonic manner. Again, the
fluttermode must be classified as a traveling wave, in the generalized sense.

SUMMARY AND CONCLUSIONS
An overview of a new method for simulating the aeroclastic response of a diverse classof

systemshas been presented,and the advantages of the new schemein actual flutter calcula-
tions have been explored. The method has number of important advantages over existing
methods.Realistic finite elementmodelscan be introduced,without first solving large eigen-
valueproblems to obtain the normal modes. This modeling can be doneat the element level,
using existing finite elementlibraries. No assembly of massand stiffness matricesinto global
(system)matricesis required,hence there is no need to ina,oduce special procedures for deal-
ing with sparse matrices. Resultsindicate that the new computationalscheme is capable of
reproducing the energy exchangebetween the fluid and the structure with signiticandy less
error than existingmethods.

Because no global mass and stiffness matrices are assembled for the structure, the actual
dynamics simulated by the present method differs from what would be calculated by classical
modal methods. The present method simulates the local force and momentum transfer
between individual elements, in the time domain, and is therefore able to model wave propaga-
tion phenomena that most modal methods are ill-equipped to do. Because the flutter mode
emerges as part of the solution, as it would in a flutter test, there is no need to worry about
"how many" and "which" modes should be kept in the flutter analysis.

The importance of camber bending in certain transonic flutter problems has been illustrated,
including a new trailing-edge "buzz" phenomenon that is predicted to occur if the chordwise
stiffness is sufficiently low, and a nonclassical (inviscid) form of aileron buzz. Nonlinear
aeroelastic modes, where two or more degrees-of-freedom exchange energy in a nonstationary
manner during flutter, have been observed in numerical simulations of transonic flutter in cas-
cades. No linear theory can be expected to provide an adequate theoretical basis for analyzing
such phenomena. In some of these problems, many degrees of freedom participate, making
classical modal method less efficient. It is precisely in such problems that the advantages of the
present method are brought out. For example, the possibility of considering traveling wave
flutter modes without special advance set-up is an obvious advantage, as demonstrated in the
transonic panel flutter solutions.
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Fig. 1 Coordinate system and typical 2D and 3D elements

Fig. 2a Hybrid cascade mesh (reference channel, near field)
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Fig. 2b Unstructured mesh used in panel flutter calculations (near field)
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Fig. 3 a) Modified typical section wing model with camber bending
b) Basic finite element
c) Aileron hinge element
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Fig. 4b Quasi-3D aeroelastic model, with aerodynamic channels shaded
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Fig. 9 Hopf bifurcation to transonic limit cycle flutter of NACA 0012 model at Mach
0.80 and high mass ratio (p = 4284)
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tion that gives rise to weak divergence and flutter-divergence interactions at Mach 0,80
and p='/5
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Fig. 12 Stable response of NACA 0012 model at Mach 0.94 and U = 8.0, as calculated
by classical scheme. Classical scheme fails to predict flutter lor this Mach number, up
to the divergence boundary, in sharp contrast to the predictions of the new scheme
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Fig. 14 Blade pressure coefficient Cp during limit cycle flutter shown in Fig. 13

O. Bcndiksen 30



w
THEIA

-.05

NACA 0006 CASCADE _"'"°
14 = 0.85 AO R 3.0

KB- 3.00 _ • 0.375

trOT

WORKt
0.02 /- E,.,

o.ol

o.oo EupW_

(_0 s 1015 20 25

I NONDIMrN_IONAL T'JM[

(Moo" 0.85 ; to0-3" ; p... IJOpoo ; •- 0")

Fig. 15 Nonlinear (nonclassical) bending-torsion flutter of NACA 0006 cascade with
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Fig. 16 Highly nonlinear flutter at Mach 0.90 of cascade in Fig. 15. Note stabilizing
effect of Increasing Mach number from 0.85 to 0.90
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Fig. 17 Explosive flutter of a rotating NACA 0003 blade in an unstaggered cascade: a)
plunging motion (at EA); b) angle of twist; c) Hamiltonian and work done by aero-
dynamic forces (sic = 1, M, = 0.85, o= ]80 deg, L/c = I)
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Fig. 18 Transonic limit cycle panel flutter at Mach 1.0, illustrating highly irregular (but
periodic) aeroelastic response and evidence of a traveling wave. Simply supported
aluminum panel at 20,000 I1 altitude; h/c = 0.004
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Fig. 19 Transonic panel flutter at Mach 1.2 of same panel as in Fig. 18. Initial transient
response is not shown
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